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Abstract

Unsupervised image anomaly detection is a challenging task in which a model is
expected to discriminate between normal and anomalous images, given that it has
only been exposed to normal images during training. A recent branch of develop-
ment relies on generative models to learn the underlying distribution of normal,
in-distribution samples. The trained model can then ideally be used to identify
out-of-distribution samples [1, 8, 9]. One promising type of generative model for
this setup are normalizing flows, since they allow for exact likelihood estimation of
individual samples by applying a sequence of invertible transformations in reverse
order. However, most of state-of-the-art normalizing flow approaches for anomaly
detection obtain the likelihood of a sample from raw pixels, which does not give
accurate results, and can be computationally expensive for some flow models (e.g.
Glow [3]).
To alleviate this issue, we propose an encoder-flow pipeline for anomaly detection
using an encoder and normalizing flow for likelihood estimation on high-level
features. The encoder receives an image and outputs a latent space vector as the
compact representation of the sample. The latent vector is then passed through the
normalizing flow to compute its likelihood. The use of an encoder is supported by
previous work in which likelihood estimation from image embeddings has yield
better results on anomaly detection compared to likelihood estimation from raw
pixels [4]. The notion of encoder can be generalized to any function that maps an
image to latent space, ideally reflecting the most characteristic features of a sample
with its corresponding latent vector. In particular, on this paper we explore the use
of an encoder trained as part of an autoencoder.
Given the autoencoder and the encoder-flow pipeline, training is performed on two
stages. On the first stage, the autoencoder attempts to improve the reconstruction
quality of images passed through the latent space bottleneck by minimizing the L1

distance from the original image to its reconstruction. On the second stage, the
normalizing flow is trained over the latent space vectors obtained from the encoder
(of fixed weights) to approach a normal distribution. After training, a clear line
to define which samples are in- or out-of-distribution can be drawn by selecting
a threshold according to a confidence interval from likelihood estimations of all
training set samples.
We follow on the experimental setup employed by [1] to measure the performance
of methods for anomaly detection. On this regard, we select labeled datasets
MNIST [6] and CIFAR-10 [5] for training and validation. In this setup, nine out
of ten classes are labeled normal and used for training, while the remaining class
is labeled anomalous and kept for validation. Additionally, we expect any dataset
different from the one used for training to be considered out-of-distribution. For
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Figure 1: Distribution of likelihood estimations for samples from in-distribution CIFAR-10 dataset
compared to (left) out-of-distribution CIFAR-10 class plane, and (right) out-of-distribution SVHN
dataset. (left) The distribution of normal images has higher likelihood than the distribution of
anomalous images, and shows a clear separation from it. (right) Note the distribution of normal
images has lower likelihood than the distribution of anomalous images.

this reason, we also select SVHN as a validation dataset on our experiments. The
decoder and encoder architectures are based on the generator and discriminator
components of a DCGAN respectively [7]. The normalizing flow chosen for
experimentation is Real-NVP [2].
The results of training and evaluating the model on CIFAR-10 with anomalous class
plane are shown on Figure 1 (left). As expected, there is a clear separation between
the distribution of normal and anomalous images. However, as shown on Figure
1 (right), the out-of-distribution dataset is assigned a higher likelihood than the
dataset used for training, which results in low performance on anomaly detection.
This results align to ones obtained on previous studies of normalizing flows for
anomaly detection [4]. A comparison with Ganomaly [1] shown on Figure 2
confirms our proposal still requires further improvements to achieve state-of-the-art
results.

Figure 2: Comparison between our approach and Ganomaly [1] measured by the AUC score. Each
value on the x-axis represents a class selected as anomaly and used for evaluation, from which an
AUC score can be computed.

This work presents a novel encoder-flow architecture for unsupervised image
anomaly detection. The results so far suggest more work must be done to under-
stand the mechanics of normalizing flows in anomaly detection, and why they
assign overall lower likelihood to training samples compared to samples taken from
other datasets. Additionally, another future research path is replacing the encoder
from the autoencoder by a modern encoder architecture as a means to obtain better
sample representations for likelihood estimation.
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