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Abstract— Learning from human demonstrations has been
successfully applied to the automation of a range of robotic
tasks, but can struggle when (1) robots sometimes encounter
edge cases that are not represented in the training data or
(2) the human demonstrations are multimodal (e.g., choosing
different paths around an obstacle). Interactive fleet learning
(IFL) increases reliability by allowing robots to fall back on
remote human teleoperators during task execution and learn
from them over time. While IFL mitigates the issue of edge
cases, IFL often encounters multimodality as the humans
may provide demonstrations in different ways. Human control
policies are heterogeneous, noisy, multimodal, mixed quality,
and non-Markovian. Recent work proposes Implicit Behavior
Cloning, which models the robot policy implicitly rather than
explicitly to represent multimodal demonstrations using energy
functions. In this work, we propose a new algorithm and study
how implicit control policies can mitigate the adverse effects
of multimodality in IFL. We present Implicit Interactive Fleet
Learning, the first extension of implicit behavior cloning to
interactive imitation learning (including the single-robot, single-
human setting). We also propose a novel metric for uncertainty
quantification in energy-based models using Jeffreys divergence.
Results suggest todo: insert results. See todo: website link for
code and supplemental materials.

I. INTRODUCTION

Imitation learning (IL), the paradigm of learning from
human demonstrations and feedback, is a leading technique
for efficiently automating diverse tasks such as autonomous
driving [8, 31, 33], robot-assisted surgery [23, 32], and de-
formable object manipulation [4, 19, 36]. The most common
for IL is behavior cloning (BC) [33], where the robot policy
is derived via supervised machine learning on an offline set
of human task demonstrations. Since BC can suffer from
distribution shift between the states visited by the robot and
those visited by the human, interactive IL algorithms such
as DAgger [34] and variants [16, 22, 28] iteratively improve
the robot policy with corrective human interventions during
robot task execution. However, all of these IL algorithms are
only reliable if the data is generated by a consistent human
control policy.

In reality, human demonstrations and interventions
are noisy, multimodal, suboptimal, mixed quality, non-
Markovian, and nonstationary [27, 29]. A human providing
demonstrations of a task may make mistakes, become more
or less proficient at the task over time, or execute one of
multiple equally valid actions when encountering the same
state at different times (e.g., translating the end effector in an
arbitrary trajectory through free space on the way to a target
object). This issue is exacerbated when learning from a pool
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Fig. 1: Consider an autonomous robot pushing a block
around a pillar. (A) Multimodality: Traditional imitation
learning averages the two paths around the obstacle, leading
to collision. (B) Distribution Shift: Compounding errors
can lead the robot to visit unfamiliar states (e.g., knocking
the block over on its side). (C) Interactive Fleet Learn-
ing (IFL): Prior work proposes a paradigm for correcting
distribution shift in a robot fleet, but humans may operate
the robots in different ways. (D) Implicit IFL: We propose
a new algorithm that uses “implicit” energy-based models
(EBMs) both for representing multiple modes and estimating
uncertainty.

of multiple humans (e.g., for interactively training a fleet of
robots [18]), since the humans have varying proficiency and
may demonstrate the same task in different ways.

One recently proposed approach for IL with multimodal
human data is Implicit BC [11]. Florence et al. propose train-
ing an energy-based model (EBM) [24] that represents state-
action mappings implicitly rather than explicitly. While this
complicates model training and inference, implicit models
can flexibly represent multiple action modes for each state.
However, Implicit BC inherits the distribution shift problem
from Explicit BC.

We extend Implicit BC to the interactive fleet learning
(IFL) setting [18], a generalization of interactive imitation
learning to multiple robots and multiple humans. Since
existing state-of-the-art IFL algorithms rely on estimates
of epistemic uncertainty like the output variance among an
ensemble of networks, which are incompatible with implicit



models (Section IV-C), we propose a new measure of un-
certainty in energy-based models using Jeffreys divergence
[20].

This paper makes the following contributions: (1) Implicit
Interactive Fleet Learning (Implicit IFL), the first application
of implicit policies to interactive imitation learning, (2) a
novel uncertainty metric and supervisor allocation algorithm
using Jeffreys divergence, (3) simulation experiments with a
fleet of 10 robots and 3 heterogeneous algorithmic supervi-
sors, (4) physical experiments with a fleet of 4 robots and 2
heterogeneous human supervisors.

II. PRELIMINARIES AND RELATED WORK

A. Imitation Learning

Learning from an offline set of human task demonstrations
is an intuitive and effective way to train a robot control policy
[2, 3]. Popular approaches include behavior cloning (i.e.,
supervised learning) [31, 33, 36] and inverse reinforcement
learning [1, 3, 6], which first infers a reward function
from demonstrations and then trains a reinforcement learning
agent with this reward. These demonstrations can be aug-
mented with additional offline information such as pairwise
preferences [7] and natural language [43]. Ho et al. [14]
propose an alternative to inverse reinforcement learning using
techniques from training generative adversarial networks
[13], and Torabi et al. [42] extend this to imitation from
observation, where states are available but action labels are
not. However, imitation learning from offline demonstration
data can suffer from distributional shift [34], as compounding
approximation error leads the robot to visit states that were
not visited by the human.

B. Interactive Imitation Learning

To mitigate distribution shift, Ross et al. [34] propose
dataset aggregation (DAgger), which collects online action
labels on states visited by the robot during task execution
and iteratively improves the robot policy. Since DAgger can
request excessive queries to a human supervisor, interactive
IL [16, 22, 47] is a variant of DAgger that seeks to reduce
human burden by intermittently ceding control to the human
during robot execution based on some switching criteria.
Human-gated interactive IL [22, 25, 40] has the human
decide when to take and cede control, while robot-gated
interactive IL [16, 17, 28, 47] has the robot autonomously
decide. Hoque et al. [18] propose Interactive Fleet Learning
(IFL), which generalizes robot-gated interactive IL to multi-
ple robots supervised by multiple humans. In this work, we
consider the IFL setting.

Sun et al. [41] propose a method for interactive imitation
learning from heterogeneous experts, but their method is
designed for autonomous driving applications. Gandhi et
al. [12] also interactively learn from multiple experts and
propose actively soliciting the human supervisors to provide
demonstrations that are compatible with the current data.
However, this prevents the robot from learning alternative
modes and requires the human supervisors to cooperate with

the suggested actions, which may not be the case due to
human suboptimality, fatigue, or obstinacy [10].

C. Robot Learning from Multimodal Data

Learning from multimodal examples is an active challenge
in machine learning and robotics. A mixture density network
[5] is a popular approach that fits a (typically Gaussian)
mixture model to the data, but it requires setting a parameter
for how many modes to fit, which may not be known a
priori. When actions can be represented as pixels in an
image (e.g., pick points), a Fully Convolutional Network [38]
can be applied to learning pixelwise multimodality [19, 46].
In a very recent paper, Chi et al. [9] introduce diffusion
policies, an application of diffusion models [15] to imitation
learning from multimodal data. Shafiullah et al. [37] propose
Behavior Transformers, a technique that applies the multi-
token prediction of Transformer neural networks [44] to
imitation learning. Other Transformer-based policies report
similar benefits for multimodal data [21, 39]; however, these
approaches require action discretization to cast behavior
prediction as next-token prediction.

Florence et al. [11] propose Implicit BC, a technique that
trains a conditional energy-based model [24] that is found
to outperform explicit BC and mixture density networks in
their experiments. As opposed to explicit models that take
the form π : S → A, implicit models take the form of a
multimodal function E : S ×A→ R; the action is an input
rather than an output of the model. To sample an action
from the policy, instead of evaluating the explicit model â =
π(s), the implicit model must perform optimization over E
conditioned on state s:

â = argmin
a

E(s, a) (1)

In this work, we extend Implicit BC to interactive fleet
learning in order to both mitigate the distributional shift
problem that BC faces and the multimodality in human
teleoperation that IFL faces. To our knowledge, we are
the first to extend implicit policies to interactive imitation
learning.

III. PROBLEM STATEMENT

We consider the interactive fleet learning (IFL) problem
setting proposed by Hoque et al. [18]. A fleet of N robots
operate in parallel independent Markov Decision Processes
(MDPs) that are identical apart from their initial state dis-
tributions. The robots can query a set of M < N human
supervisors with action space AH = A∪{R}, where a ∈ A
is teleoperation in the action space of the robots and R is a
“hard reset” that physically resets a robot in a failure state
(e.g., a delivery robot tipped over on its side). As in [18], we
assume that (1) the robots share policy πθt : S → A, (2) the
MDP timesteps are synchronous across robots, and (3) each
human can only help one robot at a time. However, unlike
the original IFL formulation [18], in this work we do not
assume that the human supervisors are homogeneous; each
human i has a unique policy πi

H : S → AH . Furthermore,
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Fig. 2: In the 2D navigation experiments from Section V-A, the robot must navigate from the blue X marker to the green
X marker. (A) Robot Trajectories: Explicit BC cannot make progress past the fork due to multimodal demonstrations,
while Implicit BC cannot overcome the distribution shift due to wind in the +y direction at execution time (denoted in light
blue). Implicit IFL reaches the goal by handling both multimodality and distribution shift. (B) Implicit IFL Energy: We
display normalized Implicit IFL energy distributions from representative states in the trajectory. Lower energy indicates a
more optimal action, and the x and y axes are the 2D action deltas â that the robot can execute (which can be mapped
directly onto the corresponding 1×1 cell in the maze). At the junction point, both upward and downward actions attain
low energy; in a straight hallway, the rightmost actions attain low energy; in the windy area, actions toward the lower right
corner (making progress toward the goal while fighting the wind) attain low energy.

each πi
H may itself be nondeterministic and multimodal, but

is assumed to be optimal or nearly optimal.
An IFL supervisor allocation algorithm is a policy ω that

determines the assignment of humans to robots:

ω : (st, πθt , ·) 7→ αt ∈ {0, 1}N×M

s.t.
M∑
j=1

αt
ij ≤ 1 and

N∑
i=1

αt
ij ≤ 1 ∀i, j. (2)

Here, st are the current states of each of the robots, αt is an
N×M binary matrix that indicates which robot will receive
assistance from which human at the current timestep t, and
πθt is the shared robot control policy at time t.

The IFL objective is to find an ω that maximizes the return
on human effort (ROHE):

max
ω∈Ω

Eτ∼pω,θ0
(τ)

[
M

N
·

∑T
t=0 r̄(s

t,at)

1 +
∑T

t=0 ∥ω(st, πθt ,α
t−1,xt)∥2F

]

where ∥ · ∥F is the Frobenius norm, T is the amount of time
the fleet operates (rather than an individual episode horizon),
and θ0 are the initial parameters of πθt . The ROHE measures

the average performance of the robot fleet normalized by the
amount of human effort required to help the robots [18].

IV. APPROACH

A. Preliminaries: Implicit Models

We build on Implicit Behavior Cloning [11] in this work.
Implicit BC seeks to learn a conditional energy-based model
E : S × A → R, where E(s, a) is the scalar “energy” for
action a conditioned on state s. Lower energy indicates a
higher correspondence between s and a. The energy function
defines a multimodal probability distribution π of action a
conditioned on state s:

π(a|s) = e−E(s,a)

Z(s)
(3)

where Z(s) is a normalization factor known as the “partition
function.” Equivalently, the energy is the unnormalized neg-
ative log-probability of the action given the state. Intuitively,
such a model handles multimodality by assigning low energy
to multiple actions a1, a2, . . . for the same state s, rather
than explicitly mapping s to a single action a. In practice,
we estimate E with a learned neural network function
approximator Eθ parameterized by θ and train Eθ on samples
{si, ai} collected from the expert policies πH . Given a set of



counter-examples {ãji} for each si, Implicit BC minimizes
the following InfoNCE [30] loss function:

L =

N∑
i=1

− log p̂θ(ai|si, {ãji}) (4)

where

p̂θ(ai|si, {ãji}) =
e−Eθ(si,ai)

e−Eθ(si,ai) +
∑

j e
−Eθ(si,ã

j
i )

Florence et al. [11] propose three techniques for gen-
erating these counter-examples {ãji} and performing infer-
ence over the learned model Eθ; we choose gradient-based
Langevin sampling [45] in this work as Florence et al.
demonstrate that it scales with action dimensionality better
than the alternate methods. This is a Markov Chain Monte
Carlo (MCMC) method with stochastic gradient Langevin
dynamics. More details are available in Appendix B.3 of
[11].

B. Interactive Dataset Aggregation

Behavior cloning is prone to distribution shift due to
compounding approximation errors [34], and any data-driven
robot policy may encounter edge cases at execution time
that are not represented in the training data [18]. We extend
Implicit BC to interactive imitation learning using dataset
aggregation of online human data, as in DAgger [34] and
variants [18, 22]:

Dt+1 ← Dt ∪Dt
H

Dt
H := {(sti, π

j
H(sti)) : π

j
H(sti) ̸= R and

M∑
j=1

αt
ij = 1}

where πj
H(sti) is the teleoperation action from human j for

robot i at time t, and αt
ij is the binary assignment of human

j to robot i at time t, as in Equation 2. The shared robot
policy is iteratively updated with the aggregate dataset at a
fixed interval 1 ≤ t̂ ≤ T via supervised learning:

πθt ← argmin
θ
L(πθ, D

t)

Ross et al. [34] show that such a policy incurs approx-
imation error that is linear in the time horizon rather than
quadratic, as in behavior cloning.

C. Energy-Based Allocation

IFL requires specification of a metric for autonomously
determining the assignment of available human supervisors
to robots that require assistance. Several prior methods [16,
18, 28] use the variance of the predictions of an ensemble of
typically 5-10 (unimodal) explicit BC policies bootstrapped
on subsets of the training data as an estimate for the policy’s
epistemic uncertainty at a given state. This approach is
not applicable to implicit policies because multimodality
results in a false positive: different ensemble members can
select equally good actions from different modes, leading
to high variance even when there should be low uncertainty.

Additionally, training and inference in EBMs are much more
computationally expensive than in explicit models due to
the InfoNCE loss (Equation 4) and implicit optimization
(Equation 1), making ensembles of 5+ models impractical.
Finally, inference is inherently nondeterministic, creating an
additional source of variance that is not due to uncertainty.

The notion of disagreement between models can still be
applicable to implicit policies by considering their distribu-
tions at a given state rather than the single predicted actions.
Accordingly, we consider bootstrapping 2 implicit policies
and calculate the Jeffreys divergence DJ [20] between them
to measure their disagreement. Jeffreys divergence, the sum
of two pairwise KL divergences DKL of each distribution
from the other, offers two compelling properties: (1) it is
symmetric, consistent with both policies having been trained
the same way, and (2) it is possible to estimate Jeffreys
divergence for EBMs without knowing the partition function
Z(s), which is intractable to compute in high dimensional
spaces. To show (2), we derive the following identity:

Identity 1: Let E1 and E2 be two energy-based models
that respectively define distributions π1 and π2 according to
Equation 3. Then,

DJ (π1(·|s)∥π2(·|s)) = Ea∼π1(·|s) [E2(s, a)− E1(s, a)]

+ Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

Proof:

DJ (π1(·|s)∥π2(·|s))
≜ DKL (π1(·|s)∥π2(·|s)) +DKL (π2(·|s)∥π1(·|s))

≜ Ea∼π1(·|s)

[
log

π1(a|s)
π2(a|s)

]
+ Ea∼π2(·|s)

[
log

π2(a|s)
π1(a|s)

]
= Ea∼π1(·|s) [E2(s, a)− E1(s, a)]− logZ1(s) + logZ2(s)

+ Ea∼π2(·|s) [E1(s, a)− E2(s, a)]− logZ2(s) + logZ1(s)

= Ea∼π1(·|s) [E2(s, a)− E1(s, a)]

+ Ea∼π2(·|s) [E1(s, a)− E2(s, a)]

todo: move to appendix if short on space. From an initial
search this appears to be novel, but we will more thoroughly
check if anyone has done this before Crucially, the intractable
log partition functions are cancelled out due to the symmetry
of the Jeffreys divergence. We estimate the expectations in
Identity 1 using Langevin sampling. Intuitively, if both poli-
cies are the same, the Jeffreys divergence will be zero; other-
wise, it will be positive and independent of the magnitude of
the energy functions. Since the Jeffreys divergence provides
a measure of the robot’s epistemic uncertainty, we use it with
Fleet-DAgger [18] for energy-based allocation in Implicit
IFL. As in Fleet-EnsembleDAgger [18], we prioritize robots
that have uncertainty above a given threshold value followed
by robots which are violating constraints.

V. EXPERIMENTS

A. 2D Navigation Simulation Experiments

To evaluate the correctness of our implementation and
provide visual intuition, we first run experiments in a 2D



pointbot navigation environment. See Figure 2 for the maze
environment, representative trajectories, and energy distribu-
tion plots. We consider discrete 2D states s = (x, y) ∈ N2

and continuous 2D actions a = (∆x,∆y) ∈ [−1, 1]2. The
maze has a fixed start and goal location and consists of
a forked path around a large obstacle followed by a long
corridor. An algorithmic supervisor provides 100 demon-
strations of the task, randomly choosing to go upward or
downward at the fork with 50% probability each. Since a
model can simply overfit to the demonstrations in this low-
dimensional environment, to induce distribution shift we add
“wind” at execution time to a segment of the right corridor
with magnitude 0.75 in the +y direction.

In 100 trials, Explicit BC achieves a 0% success rate,
Implicit BC achieves a 0% success rate, and Implicit IFL
achieves a 100% autonomous success rate (i.e., robot-only
trajectories without human interventions, after interactive
training). In Figure 2 we observe that Explicit BC cannot
pass the fork due to averaging the two modes to zero.
Meanwhile, Implicit BC is not robust to the distribution shift:
once the wind pushes the robot to the top of the corridor, it
does not know how to return to the center. We also observe
that the Implicit IFL energy distributions in Figure 2(B)
reflect the desired behavior in accordance with intuition.

B. IFL Benchmark Simulation Experiments

Environments: We evaluate with the following 3 contin-
uous control environments from Isaac Gym [26] and the In-
teractive Fleet Learning Benchmark [18]: Ball Balance, Ant,
and Anymal. Isaac Gym enables efficient GPU-accelerated
simulation of robot fleets. Environment details are available
in the appendix.

Metrics: We measure the average episode reward across
the fleet, the total number of hard resets, and the total idle
time (how long robots that require a hard reset spend idle
waiting for humans). For interactive algorithms, we also
measure the return on human effort. We use the episode
rewards provided by Isaac Gym to measure performance but
do not require the task to define a reward in order to apply
our method, as Implicit IFL does not perform reinforcement
learning.

Baselines: We compare Implicit IFL to the following base-
lines: Explicit BC, Implicit BC, Explicit IFL (specifically,
Fleet-EnsembleDAgger [18]), and Random Implicit IFL
(which performs random human-to-robot allocation rather
than the proposed energy-based allocation).

Experimental Setup: We run experiments with a fleet
of N = 10 robots and M = 3 heterogeneous algorith-
mic supervisors. The supervisors are reinforcement learning
agents trained with Isaac Gym’s reference implementation
of PPO [35]. To create heterogeneous supervisors, we train
3 PPO agents to convergence with different seeds: 10, 100,
and 1000. This creates supervisors that attain similar rewards
but execute different actions. For instance, when compared
to the actions taken by the seed 10 Ball Balance expert
on its own state trajectory, the seed 100 and seed 1000
expert actions for those states have a mean L2 distance of

1.49 ± 0.55 and 1.50 ± 0.54 respectively, which are as far
apart as actions taken by a random agent (mean L2 distance
1.47± 0.55). All training runs have hard reset time tR = 5
timesteps, minimum intervention time tT = 5 timesteps, and
fleet operation time T = 10, 000 timesteps, and are averaged
over 3 random seeds. The initial robot policy πθ0 for all
algorithms is initialized with behavior cloning on 5 full task
demonstrations from each of the 3 experts (e.g., Ant with an
episode length of 1000 gets 3×5×1000 = 15000 state-action
pairs); the offline algorithms of Explicit BC and Implicit BC
receive double this amount since they do not receive online
data.

Results: The results are shown in Figure todo: . We
observe that ...

C. Physical Experiments

Experimental Setup: Similar to Hoque et al. [18], we
run an image-based block-pushing experiment with a fleet
of N = 4 ABB YuMi robot arms operating simultaneously
in 2 labs about 1 km apart. See Figure todo: for the physical
setup. Each robot has an identical square workspace with a
small blue cube and rectangular pusher as an end effector.
Unlike the prior work, we add a large square obstacle (side
length about 3× the block’s side length) to the center of
each workspace, which the robot must avoid on the way to
the goal. The task is reset-free in that the goal region is
generated in the overhead image observation to be diametri-
cally opposite the cube’s initial location and across the center
obstacle. However, if the cube collides with the obstacle or
the boundaries of the workspace, a physical hard reset R is
required. Furthermore, unlike the discrete actions in the prior
work, we use a continuous 2D action space of a = (∆x,∆y)
that corresponds to the vector along which to push the block,
starting from the block’s center. We set tT = 3, tR = 5, and
T = 150 for a total of 150 × 4 = 600 pushing actions for
each of 4 algorithms: Explicit BC, Implicit BC, Explicit IFL
(Fleet-EnsembleDAgger), and Implicit IFL.

Results: The results are shown in Table todo: . We observe
that ...

VI. LIMITATIONS AND FUTURE WORK

In this paper we present Implicit IFL, an algorithm for
interactive fleet learning from multimodal human supervi-
sors. Since we extend Implicit BC, we inherit some of its
limitations: namely, model training and inference require
more computation time than explicit methods, and perfor-
mance falls when the action space dimensionality is very
high (|A| > 16). Our energy-based switching also requires
the training of two implicit models rather than one.

In future work, we hope to extend recently proposed
alternative approaches for handling multimodality such as
Behavior Transformers [37] and Diffusion Policies [9] to
the IFL setting and compare them to Implicit IFL. We
also hope to develop algorithms that effectively learn from
human demonstrations that are not only multimodal but also
suboptimal or of mixed quality.
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